Bluetooth Ingestible Capsule

Group: sddec23-19 Members: Chase Thompson, Cutler Thayer, Jon Thomas, Robert Zukowski Website: https://sddec23-19.sd.ece.iastate.edu/

Problem Statement

- We want to diagnose Gastrointestinal (GI) Ailments in affordable, non-invasive ways using ingestible capsules
- Our solutions
 - Wirelessly capture and transmit GI images
 - Automatically detect points of interest within GI images
 - Create a GUI to aid with viewing points of interest
- Our hopes
 - Reduce labor of gastroenterologists diagnosing colon ailments
 - Reduce cost of ingestible imaging capsules

Design Requirements

Functional Requirements:

- Analyze images for signs of abnormalities
- Display the image data and analysis findings
- Receive data from an image sensor,
- Send/Receive images via Bluetooth/USB

Non-Functional Requirements:

- Electronics must fit in a standard 000 size capsule
- Analysis of an image frame can be completed before another frame is received

Credit: National University of Singapore

Accomplishments

- Successfully detects abnormalities in GI images
- Acquired an image dataset of GI irregularities
- Stores flagged images in a labeled folder and shows thumbnails in GUI
- Successfully send image data over Bluetooth and USB
- Researched an image sensor that meets size specifications

Capsule Breakdown

Prototypes

Software Breakdown

- Python script receives image data from Bluetooth
- 2. Image data is sent to image analysis script while also being saved under "liveview.jpg"
- 3. Image analysis script detects if ailments are present in the image
- 4. If ailments are detected, a contoured image is generated and saved under the flagged_images directory
- 5. GUI loads "liveview.jpg" and displays it to the user while also checking for flagged images

Demo

Testing

Image Analysis Testing

- Unit Tests
- 50 tests, 86% coverage
 - 25/25 tests passed for saving images
 - 17/25 tests passed for successfully analyzing images

short test summary info
LED test_image.py::test_img_analysis[1.jpg] - AssertionError: assert 'False' == 'True'
LED test_image.py::test_img_analysis[18.jpg] - AssertionError: assert 'False' == 'True'
LED test_image.py::test_img_analysis[2.jpg] - AssertionError: assert 'False' == 'True'
LED test_image.py::test_img_analysis[3.jpg] - AssertionError: assert 'False' == 'True'
LED test_image.py::test_img_analysis[4.jpg] - AssertionError: assert 'False' == 'True'
LED test_image.py::test_img_analysis[5.jpg] - AssertionError: assert 'False' == 'True'
LED test_image.py::test_img_analysis[6.jpg] - AssertionError: assert 'False' == 'True'
LED test_image.py::test_img_analysis[7.jpg] - AssertionError: assert 'False' == 'True'
8 failed, 42 passed in 0.50s

Coverage report: 86%

coverage.py v7.3.2, created at 2023-12-03 10:46 -0600

Module ↑	statements	missing	excluded	coverage
detect.py	52	10	0	<mark>81%</mark>
<pre>test_image.py</pre>	18	0	0	100%
Total	70	10	0	86%

coverage.py v7.3.2, created at 2023-12-03 10:46 -0600

Software Challenges & Solutions

Challenges	Solutions	
 Difficulty integrating C# WinForm with a Python script GUI runs in C# WinForm GUI needs to start Image Analysis Script Image Analysis runs on Python 	 Using Windows processes to start the script from the User Interface Application Adding Argparse for Python to pass different arguments from the UI 	
 False readings on images Folds within the colon can look similar to some ailments like blood Some ailments are too subtle to notice withou causing false positives 	 Focusing on the center of the images Calibrating the image threshold 	
 Sending images over Bluetooth Connection hangs New images are sent before old ones are fully received 	 Compressing image data more Only send images after so much time has elapsed 	

Hardware Challenges & Solutions

Challenges		Solutions	
 Image Sensor Integro 96 MHz pixel clo No existing embodies handle image set 	ration ck output edded software libraries to nsor	•	Direct connection to high-speed MCU
 Bluetooth Low Energy Bluetooth classion nRF devboards Reliance on Norder troubleshooting 	gy c not supported by modern lic support for	٠	Use BLE
 Capsule integration Board could not fit into standard-sized capsules 		•	Separate "blocks" wired with flex-PCBs

Key Team Contributions

Chase Thompson

- Image Analysis using OpenCV
- Developed the User Interface
- Defined test cases for image analysis
- Created test scripts for the image analysis using pytest
- Wrote documentation for building the project

Cutler Thayer

- Researched what kinds of ailments are covered in endoscopy
- Acquired training data to test for each kind of ailment

Robert Zukowski

- Drafted schematic and layout for image sensor test-board
- Researched project components used
- Began implementation/troubleshooting for image sensing over BLE

Jon Thomas

- Researched existing technology
- Facilitated advisor meetings
- Aided in solution design

Future Work

Software Plans

- Set up CI/CD Pipeline
- Improve image analysis accuracy
- Add support for detection of different ailments
- Add integration testing to fully test the LiveView segment
- Implement machine learning for image analysis
- Add support for prerecorded video scanning

Hardware Plans

- Integrate capsule
 - Requires wireless capability
- Source microcontroller with Bluetooth capabilities and high internal clock speed
- Integrate a 1.8V battery back into the design

Conclusion

- Most of the original project requirements have been met
 - Software that analyzes and categorizes images between healthy and unhealthy
 - User interface that allows the client to easily analyze already acquired images as well as a live feed from a camera
- Future Enhancements
 - Support for more ailments
 - Larger set of training data
 - Improvement to the code base

Chase Thompson

Software Engineering

Robert Zukowski

Electrical Engineering

Cutler Thayer

Computer Engineering

Jon Thomas

Electrical Engineering

